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ABSTRACT 

We use the lag-luminosity relation to calculate self-consistently the redshifts, 
apparent peak bolometric luminosities Lg, and isotropic energies E& for a large 
sample of BATSE bursts. We consider two different forms of the lag-luminosity 
relation; for both forms the median redshift, for our burst database is 1.6. We 
model the resulting sample of burst energies with power law and Gaussian dis- 
tributions, both of which are reasonable models. The power law model has an 
index of Q = 1.76 f 0.05 (95% confidence) as opposed to the index of a. = 2 
predicted by the simple universal jet profile model; however, reasonable refine- 
ments to this model permit much greater flexibility in reconciling predicted and 
observed energy distributions. 

Subject headings: gamma-rays: bursts 

1. Introduction 

The major breakthroughs in the study of gamma-ray bursts of the past six years- 
most if not all bursts are cosmological, bursts are not standard candles, the fireballs are 
beamed) many bursts are associated with supernovae-resulted from the intensive study of 
a relatively small number of bursts without regard for whether these bursts formed a well 
defined statistical sample. However, realizing that for any one burst we are only sampling 
an anisotropic radiation pattern from one direction, we now have to study distributions of 
burst properties to reconstruct what bursts look like from all directions. Well-defined burst 
samples are required to derive these distributions. 
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Unfortunately, we do not yet have a large sample of bursts with redshifts, which in 
most cases are required for calculating the intrinsic burst properties. The two dozen or 
so bursts with redshifts were detected by various detectors with different detection thresh- 
olds and energy sensitivities, and the follow-ups that resulted in the redshifts depended 
on the vagaries of weather and telescope availability. BATSE provided a large burst Sam- 
ple with well-understood thresholds, but without direct redshift determinations for most of 
these bursts. However, redshifts can be determined indirectly from the lag-luminosity or 
variability-luminosity relations. Here we calculate self-consistently the redshifts for a large 
subset of the BATSE bursts using the lag-luminosity relation. To accommodate the prob- 
lematic burst GRB980425, which is significantly underluminous if the lag-luminosity relation 
is a single power law, Salmonson (2001) and Norris (2002) proposed that the relation should 
be a broken power law. This reduces the luminosity of many long-lag bursts, moving this 
population closer to the observer. 

We use the resulting redshifts to calculate both the peak bolometric luminosity LB and 
the isotropic energy Eiso; both quantities assume that the burst radiates isotropically. We 
consider the isotropic energy Eiso to be more fundamental, and therefore model the energy 
distribution. 

The energy distribution can discriminate between the two proposed models for the 
structure of the jets. The uniform jet model (Frail et al. 2001; Bloom, Frail, & Kulkarni 
2003) assumes that all jets have a constant surface energy density E (energy per solid angle) 
but differing opening angles 6,. The model makes no predictions for the energy distribution. 
In the universal jet profile model (Rossi, Lazzatti, & Rees 2002; Zhang & Meszaros 2002) 
all jets have the same surface energy density E as a function of off-axis angle 8, and thus 
the observed differences in LB or E,,, results from our angle 8, relative to  the jet axis. This 
model predicts that if the surface energy density E is a power law with index I C ,  E oc Qk, then 
the energy distribution will be a power law with index a = 1 - 2/k, where N(Ei,,) 0: E%;,"; 
hence a = 2 for IC = -2. A Gaussian profile results in a = 1. Numerical modelling of 
hypernovae (Zhang, Woosley, & MacFadyen 2003) show that the surface energy density of 
the outflows should vary with off-axis angle, but do not predict the profile. Thus the profiles 
are empirical models to fit the data. 

The simple universal jet profile model can be falsified by the observed energy distribution 
but the uniform jet model cannot. However, physically plausible refinements, such as allowing 
the parameters of the jet profile to vary somewhat from burst to burst-the jet profile is now 
only quasi-universal-results in much greater flexibility in reconciling predicted and observed 
energy distributions (Lloyd-Ronning et al. 2003). Nonetheless, we compare our calculated 
energy distributions to the predictions. 
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In these calculations we use a cosmology with 
R,1 = 0.7. We use the notation p ( a  1 b) to mean the 

Ho = 70 km s - ~  Mpc-’, R, = 0.3 and 
probability of a given b. 

In $2 we present the methodology used in this study: calculating the burst redshifts 
($2.1); fitting the intensity distribution ($2.2); and using the cumulative probability to test 
the quality of the fit ($2.3). The implementation of this methodology is discussed in $3 and 
the results are provided by $4. Finally, our conclusions are in $5. 

2. Methodology 

2.1. Calculating Redshifts 

In the absence of a large number of measured spectroscopic redshifts, we use the lag- 
luminosity relation (Norris et al. 2000) to calculate peak luminosities Lg, and subsequently 
redshifts, for a large burst sample. Assume that for a set of bursts we have measured the lag 
between the lightcurve in two energy bands TO (s), the peak photon flux P (ph s-l cm-2) in 
the energy band El-&, and the spectral fit for the time period over which P is measured. 
The spectral fit is characterized by the parameters a, /3 and Ep of the “Band” model (Band 
et al. 1993). The instrument team is assumed to have converted the observed peak count 
rate into the peak photon flux using the fitted spectral model and the response function. 

The lag TB in the burst’s frame and the observed lag TO, both between the same energy 
bands in their respective frames, are related by time dilation (which increases the lag) and 
spectral redshifting (which shifts the smaller lag at high energy into the observed band). 
The first effect is simple and universal-a factor of (1 + z)-l- The second depends on the 
burst’s spectral evolution, and may vary from burst to burst. Thus 

We will assume that g(z) is universal, and as an ansatz we assume g(z)  = (1 + z ) “ ~ .  Time 
dilation contributes -1 to G, while the redshifting of temporal structure with a smaller lag 
from higher energy contributes a positive constant (e.g., - 1/3; Fenimore et al. 1995 found - 0.4). 

Empirically the lag has been related to the apparent bolometric peak luminosity LB 
(erg s-l; Norris et al. 2000) 

LB=Q(TB)  - (2) 

The observed peak bolometric energy flux F’ is related to the bolometric peak lumi- 
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nosity LB through the redshift, and an assumed cosmology: 

where DL is the luminosity distance. Note that Lg is the “isotropic” peak luminosity, the 
peak luminosity if the observed flux were beamed in all directions. If the flux is actually 
beamed into a solid angle AR, then the actual peak luminosity is only AR/47r of LB. We 
define 

( E )  = F B / p  (4) 

(5) 

(6) 

where P = k; N ( E ) d E  

and FB = 1 E N ( E ) d E  ; 
03 

N ( E )  is the photon spectrum. 

The implicit equation for redshift, 

must be solved for each burst. The functional form of the lag-luminosity relation Q can be 
calibrated from the small set of bursts for which z is known (see below). We have an ansatz 
for g(z )  with one unknown constant c,. This constant can be calculated using the dependence 
of 7 on energy bands (Fenimore et al. 1995). Alternatively e, can be fit simultaneously with 
the determination of Q. 

For this large database we then have Lg,  z ,  7 0 ,  P and the spectral parameters for the 
peak of the lightcurve. This database can be used to study the distribution of intensity 
measures such as the total burst energy and the peak luminosity. 

2.2. The Intensity Distribution 

We use a Bayesian analysis to investigate intensity distributions. In this study we 
consider the total isotropic energy Ei,, as the relevant intensity measure; the isotropic energy 
is the energy emitted if the observed flux were radiated isotropically and not beamed towards 
us. Note that the same formulae apply substituting Lg for Eiso. 

Assume our burst database provides the isotropic energy Eiso, the peak flux P and the 
redshift z for each burst (Band 2001). The threshold peak flux Pmin is assumed to be known, 
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from which the threshold isotropic energy Eiso,min for each burst can be calculated: to first 
order Eiso,min = E i m  P m i n / P .  The energy distribution function is the normalized probability 
distribution p ( E h  I ai ,  Mj,  z ,  I )  where 4 is the set of parameters that characterize the j t h  
model distribution function represented by Mj,  and I specifies general assumptions about 
the distribution function. For generality the energy distribution function has been given a 
redshift dependence. However, the observed Eiso  are not drawn from ~ ( L B  14, M j ,  z ,  I )  but 

where O(z) is the Heaviside function (1 for positive z and 0 for negative z); E h  is drawn 
from the observable part of the luminosity function. We now form the likelihood 

where the ith burst has isotropic energy Eh,i, threshold isotropic energy Eiso,min,i and redshift 

In the “frequentist” framework best-fit parameters are typically found by maximizing 
Aj. The Bayesian analysis is based on p ( G  I D ,  Mj,  I ) ,  the posterior probability for the 
parameters; here D is the set of observed peak bolometric luminosities and their thresholds. 
Note that Aj = p(D 1 ai ,  M j ,  I ) .  Thus an estimate of the parameters is 

where p(a i  I M j ,  I )  is the prior for the parameters ai. If Zj = p ( D  1 ai, Mj, I)p(a< I Mj,  I )  is 
sllaxpiy peaked, then the expectation value of the parameters occurs at the peak of Z j .  Note 
that Zj is the likelihood in eq. 9 times the priors for the parameters, and is proportional to 
the posterior probability p($  I D ,  M j ,  I ) .  The posterior probability is also used to  determine 
the acceptable parameter range, which is often more meaningful than the “best” parameters 
values. 
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2.3. The Cumulative Probability 

The Bayesian approach does not provide a goodness-of-fit statistic. However a frequen- 
tist statistic can be derived. For each burst the cumulative probability is 

M 

p(Eiso I Eiso,rnin,i, a;, zi, Mj,  1) dEiso . (11) 
L i s , ,  

P(Eiso,i  I Eiso,min,i ,  4, zi, Mj, 1) = 

If the assumed energy distribution function is an acceptable characterization of the obser- 
vations (which would be the case if the model Mj is correct) and all the assumptions are 
valid (e.g., the cosmological model is correct), then the cumulative probabilities P(Eiso,i) 
should be uniformly distributed between 0 and 1, and have an average value of (P(Eiso,i)) = 

1/2 f (12N)-1/2 for N bursts in the sample. 

3. Implementation 

3.1. Datasets 

Our data are all derived from various BATSE burst databases. We start with a database 
for 1438 bursts that includes the lags and their uncertainties, the peak flux P on the 256 ms 
timescale, the burst duration T90,  and hardness ratios among the 4 BATSE energy channels 
(30-50, 50-100, 100-300, and 300-2000 keV). Of these 1438 bursts, 1218 have positive lags. 

To calculate the average energy ( E )  (see eq. 4) we use the parameters of “Band” spec- 
trum fits by Mallozzi et al. (1998) to the 16 channel BATSE “CONT” count spectra accu- 
mulated over the peak flux time interval (usually 2.048 s) for the 580 bursts in our database 
that are also in the Mallozzi et al. database. For the 858 bursts that are not in the Mallozzi 
et al. database we assume the average low and high energy spectral indices of a = -0.8 
and ,O = -2.3 found by Preece et al. (2000). Because Ep, the energy of the peak of the 
E N ( E )  0: v fv  curve, and HR32, the 100-300 keV to 50-100 keV hardness ratio, are strongly 
correlated, we use the empirical relation Ep = 240 HRg2 keV (for HR32 5 2.25) for the bursts 
without spectral fits. Figure 1 shows the resulting scatter plot for Ep vs. HR32. 

3.2. The Lag-Luminosity Relation 

Based on less than a dozen bursts, Norris et al. (2000) found that LB cc 7-i1.15. However, 
this single component relationship predicts a much greater LB than observed for GRB980425, 
the burst that appears to coincide with the supernova SN1998bw. By introducing a break 
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in the lag-luminosity relation Salmonson (2001) and Norris (2002) were a.ble to include 
GRB980425. The resulting lag-luminosity relation is: 

Lsl = 2.18(~/0.35 s)'~, CL = -1.15 for r 5 0.35 s, - 4.7 for r > 0.35 s. (12) 

where LsI = L ~ / l o ~ '  erg s-'. In our calculations we use both the single (i.e., cL = -1.15 
for all r )  and two component lag-luminosity relations. 

4. Results 

4.1. Lag-Luminosity Relation and Redshift 

We first investigate the lag-luminosity relation. Salmonson (2001) and Norris (2002) 
introduced a break in the simple power law relation to include the long lag, very low luni- 
nosity GRB980425. As a result of this break other long lag bursts in the BATSE database are 
assigned low luminosities, and consequently small distances; Norris suggests that there may 
be a population of nearby low luminosity bursts. Figure 2 demonstrates this: the solid line 
is the cumulative distribution of burst redshifts assuming a single power law lag-luminosity 
relation, while the dashed line shows the distribution for the broken power law. Introducing 
a break in the power law shifts the low redshift bursts closer. Note this break is included only 
to include GRB980425 in the lagluminosity relation; if GRB980425 was not associated with 
SN1998bw or if GRB980425 was anomalous, then this break is unnecessary and unsupported 
by other data. 

Figure 2 also shows that there are few bursts with z > 10. These bursts may indeed 
be at high redshift; finding such high redshift bursts is one of the goals of the Swift mission. 
However, on theoretical grounds bursts with z > 17 are not expected. Given the dispersion 
in the lag-luminosity relation, it is not surprising that some bursts are assigned redshifts as 
high as z = 65; large redshifts result from high luminosities for bursts with very small lags, 
which are particularly difficult to measure accurately. Thus the lag-luminosity relation does 
not give unphysical results at the high luminosity end. Norris (2002) placed an upper limit 
on the luminosity when he found a large number of very high redshift bursts. 

We use the simple single power law lag-luminosity relation without any cutoffs or limits 
in the following analysis. 

For our database the median'redshift is z, = 1.58. As can be seen from Figure 1, 
this redshift is greater than the redshift range where the form of the lag-luminosity relation 
makes a difference. 
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4.2. The Eiso Distribution 

We focus on the distribution functions of the bolometric energy. To perform quantitative 
estimates of distributions as a function of redshift (e.g., of the burst rate) the threshold for 
the database must be known, and therefore studies have often focused on the peak luminosity 
LB;  LB is more closely related to the peak flux P,  which has a relatively sharp instrumental 
threshold Pmin. However, to study distributions of intrinsic burst quantities the threshold 
for that quantity for each observed burst will suffice. Thus our database is sufficient to study 
both the isotropic energy Eiso and the peak luminosity LB distributions. 

Figure 4 shows the scatter plot of the isotropic energy Eiso.  The region just above the 
threshold is underpopulated, suggesting that the thresholds are underestimated. Therefore, 
we raise the threshold to Pmin = 0.5 ph cm-2 s-'. This raises the median redshift from 1.58 
to 1.62. 

4.2.1. Power Law Eiso Distribution 

Universal jet structure models predict a power law energy distribution function with an 
index of Q = 2 (p(Eiso) 0: E;:); for a finite number of bursts the distribution must have 
a low energy cutoff Ea. We therefore fit our burst sample with this distribution function. 
Figure 5 shows the resulting likelihood surface which peaks at Q = 1.76 and log(E2) = 50.2. 
This value of E2 is the smallest value of Eiso in our sample; burst samples that extend to 
fainter bursts will probably have smaller observed values of Eiso, and consequently E2 is most 
likely smaller. The contour plot indicates that the determination of Q in independent of the 
value of E2. The 95width of 0.05. 

The likelihood alone does not indicate whether the power law model is a good descrip- 
tion of energy distribution. The average of the cumulative probability (52.3) should be 
(P(Eiso))  = 1/2 f (12N)-1/2 for N bursts. Figure 6 shows that the cumulative P(Ei,,) for 
Pmin = 0.5 ph s-l is very close to the straight line that is expected if the distribution 
function is a good description of the data. Although (P(EiS0)) = 0.4642f0.0089 (N = 1054) 
formally differs by 4a from the expected value of l/2, considering the likely systematic uncer- 
tainties (e.g., in the value of Pmin, in the determination of the lags, in the corrections for the 
redshifting of high energy lightcurves), this value of (P(Eiso)) indicates that the distribution 
can be represented by a power law. 
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4.2.2. Lognormal Ek0 Distribution 

The second model distribution we consider is a lognormal energy distribution (see 52.5.1 
of Band 2001); the parameters are the centroid Biso,cen and the logarithmic width OE of the 
distribution. For this distribution the posterior distribution (relevant to a Bayesian analysis) 
as a function of 1nEh,cen and OE and the likelihood (relevant to a frequentist analysis) are 
the same if the prior is constant in and OE. Figure 7 shows the likelihood surface; 
the peak occurs at Eh,mn = 3 x lo5' ergs and OE = 2.7. However, as the figure shows, a 
broader distribution (larger OE) with a smaller centroid Eiso,cen is not ruled out. 

For P*n = 0.5 ph cm-' s-' ( P ( E h ) )  = 0.4821 f0.0089 ( N  = 1054), which is consistent 
with ( P ( E k ) )  = 1/2 at the 2a level. Note that for Pmin = 0.3 ph cm-2 s-' (P(Eh)) = 
0.4598 f 0.0085 ( N  = 1162), which is differs from the expected value by nearly 50. Figure 8 
shows the distribution of the cumulative probability for Pmin = 0.5 ph cm-2 s-'; as can seen, 
the observed cumulative probability distribution is consistent with the expected distribution. 

5.  Summary 

We use the lag-luminosity relation to calculate self-consistently the redshifts for 1218 
BATSE bursts. For the bursts without the spectral parameters required by the calculation 
we use average low and high energy spectral indices, and a peak energy Ep derived from the 
hardness ratio. We find that the redshift is quite sensitive to the spectral parameters. We 
use both single power law and broken power law lag-luminosity relations, and find that the 
broken power law relation does indeed predict a population of low luminosity, nearby bursts. 
For both forms of the relation the median redshift is 1.58. 

We use the redshifts to calculate the apparent peak bolometric flux and the isotropic 
energy, both assuming that the bursts radiate isotropically. 

We find that our burst data can be fit by a power law energy distribution with cy = 
1.76 f 0.05 (95% confidence); considering only the statistical uncertainty the power law dis- 
tribution is formally not a good fit, but with the likely systematic uncertainty the power law 
distribution is probably a good description of the data. While our power law fit is inconsis- 
tent with the original universal jet profile model (which predicts cy = 2), it is consistent with 
the jet profile models where parameters are permitted to vary. 

A lognormal energy distribution also describes the data; the data permit a smaller 
average energy if the distribution is wider. More faint bursts will bound the lower end of 
this distribution. 
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Fig. 1.- Hardness ratio HR32 (100-300 keV vs. 50-100 keV) as a function of Ep. Two 
populations are evident. First, spectral fits were not available for the bursts that fall on an 
empirical Ep o( HR;, relation. Second, bursts with spectral fits are dispersed around this 
Ep 0: HR;, relation. 
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Fig. 2.- Cumulative distribution of bursts by redshift. Solid line-one component lag- 
luminosity relation. Dashed line-two component relation. Both distributions have the 
same median redshift of 1.6. 
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Fig. 3.- Bolometric peak luminosity LB vs. redshift z for single component lag-luminosity 
relation. The lines represent the threshold peak luminosity for a threshold peak flux of 
P > 0.3 ph cm-2 s-l and Ep = 30 (2 dots-dashed line), 100 (dot-dashed), 300 (solid) and 
1000 keV (dashed). 
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Fig. 4.- Scatter plot of Eiso VS. the Eiso,min- On the dotted line Eis, = Ejso,min. The 
paucity of bursts just above the dotted line suggests that Pmin should be raised from 0.3 to 
0.5 ph cm-2 s-’. 
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Fig. 5.- Contour plot of the likelihood function for a power law energy distribution. A 
threshold peak flux of Pmin = 0.5 ph cm-2 s-' was imposed. The power law has an index of 
CY and a low energy cutoff of E2. 
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Fig. 6.- Cumulative distribution of the probability of the observed isotropic energies for 
a power law energy distribution. A threshold peak flux of Pmin = 0.5 ph cm-2 s-' was 
imposed. 
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Fig. 7.- Contour plot of the likelihood function for a lognormal energy distribution. A 
threshold peak flux of Pmin = 0.5 ph cm-2 s-' was imposed. The distribution is characterized 
by a centroid energy and a logarithmic width. 
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Fig. 8.- Cumulative distribution of the probability of the observed isotropic energies for 
a lognormal energy distribution. A threshold peak flux of Pmin = 0.5 ph cm-2 s-' was 
imposed. 


